Método da bissecção
$\small f(x)=0 \,, \,\, x\in[a,b]$
$\small f(x)=0 \,, \,\, x\in[a,b]$
$\small f(x)=0 \,, \,\, x\in[a,b]$
$\small f(x)=0 \,, \,\, x\in[a,b] \phantom{\displaystyle I_T(f)\approx\int_{a}^{b}\!f(x)\,dx}$
$\small \displaystyle I_T(f)\approx\int_{a}^{b}\!f(x)\,dx$
$\small \displaystyle I_S(f)\approx\int_{a}^{b}\!f(x)\,dx$
$\small y^{\prime}=f(x,y) \,, \,\, x\in[a,b] \,, \,\, y(a)=y_0 \phantom{\displaystyle I_S(f)\approx\int_{a}^{b}\!f(x)\,dx}$
$\small y^{\prime}=f(x,y) \,, \,\, x\in[a,b] \,, \,\, y(a)=y_0$
$\small y^{\prime}=f(x,y) \,, \,\, x\in[a,b] \,, \,\, y(a)=y_0$
$\small y^{\prime}=f(x,y)$