Parábola
$\small (x-a)^2=4\,p\,(y-b) \phantom{\displaystyle \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1}$
$\small (x-a)^2=4\,p\,(y-b) \phantom{\displaystyle \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1}$
$\small \displaystyle \frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1$
$\small \displaystyle \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1$
$\small Ax^2+Bxy+Cy^2+Dx+Ey+F=0 \phantom{\displaystyle \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1}$
$\small Ax^2+Bxy+Cy^2+Dx+Ey+F=0$