Funções trigonométricas
$\small \cos^2\!x+\sin^2\!x=1$
$\small \cos^2\!x+\sin^2\!x=1$
$\small y=f(x) \,\,\, \rightarrow \,\,\, x=f^{-1}(y)$
$\small y=a^x\,\,\,\Leftrightarrow\,\,\,x=\log_ay$
$\small \cosh^2\!x-\sinh^2\!x=1$
$\small \Delta f \approx df \phantom{\displaystyle \sum_{i=1}^{n}f(c_i)\,\Delta x_i \,,\, \int_{a}^{b}\!f(x)\,dx}$
$\small \displaystyle \sum_{i=1}^{n}f(c_i)\,\Delta x_i \,,\, \int_{a}^{b}\!f(x)\,dx$